Thermochemical equations and Hess Law
Lesson 2a
Read before attempting these questions.
A few rules apply to manipulating balanced thermochemical equations

1) When reversing an equation change the sign of the ΔH

For example
$\Rightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})=>2 \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-566 \mathrm{~kJ} / \mathrm{mol}$
$\Rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})=>2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+566 \mathrm{~kJ} / \mathrm{mol}$

2) When multiplying the equation also multiply the ΔH

For example
$\Rightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})=>2 \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-566 \mathrm{~kJ} / \mathrm{mol}$
$\Rightarrow \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})=>\mathrm{CO}_{2}(\mathrm{~g}) \Delta H=-283 \mathrm{~kJ} / \mathrm{mol}$
3) When adding equations also add the ΔH

For example

1) ----- $C(s)+O_{2}(g)=>\mathrm{CO}_{2}(g) \Delta H=-393 \mathrm{~kJ} / \mathrm{mol}$
2) $----2 C(s)+O_{2}(g)=>2 C O(g) \Delta H=-221 \mathrm{~kJ} / \mathrm{mol}$
$3 \mathrm{C}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g})=>2 \mathrm{CO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=(-393 \mathrm{~kJ} / \mathrm{mol}+-221 \mathrm{~kJ} / \mathrm{mol})=-614 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{aligned}
& \text { 1) }----2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})=>4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{CO}_{2}(\mathrm{~g}) \Delta H=-1352 \mathrm{~kJ} / \mathrm{mol} \\
& \text { 2) }----\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})=>\mathrm{CO}_{2}(\mathrm{~g}) \Delta H=-393 \mathrm{~kJ} / \mathrm{mol} \\
& \text { 3) }----2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}=>2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Delta H=-484 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

a) $3 \mathrm{C}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g}) \Delta H=-393 \mathrm{~kJ} / \mathrm{mol} X 3=-1179 \mathrm{~kJ} / \mathrm{mol}$
b) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=>2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+484 \mathrm{~kJ} / \mathrm{mol}$
c) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})=>\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+1 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+676 \mathrm{~kJ} / \mathrm{mol}$
d) Find the $\Delta \mathrm{H}$ of the following thermochemical equation below
$2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})=>4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{C}(\mathrm{s}) \Delta \mathrm{H}=-1352+393 \times 2 \mathrm{~kJ} / \mathrm{mol}=-566 \mathrm{~kJ} / \mathrm{mol}$
Flip equation 2 and change the sign of the ΔH to $+393 \mathrm{~kJ} / \mathrm{mol}$ multiply it by 2 and add it to equation 1
e) Find the $\Delta \mathrm{H}$ of the following thermochemical equation below
$2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})=>2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \Delta H=+566 \mathrm{~kJ} / \mathrm{mol}$
2) Given the equations below find the $\Delta \mathrm{H}$ of $\mathrm{C}(\mathrm{s})+\mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{CO} 2(\mathrm{~g}) \Delta H=-394 \mathrm{~kJ} \mathrm{~mol}$
$1-\cdots----\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \Delta H=-110.5 \mathrm{~kJ} \mathrm{~mol}-1$
2------- CO(g) +1⁄2O2(g) \rightarrow CO2 (g) $\Delta \mathrm{H}=-283 \mathrm{~kJ}$ mol-1

